organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hai-Bo Wang,* Jia-Hui Chen, Yue-Qing Pu and Jin-Tang Wang

Department of Applied Chemistry, College of Science, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China

Correspondence e-mail: wanghaibo@njut.edu.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.003 Å R factor = 0.041 wR factor = 0.142 Data-to-parameter ratio = 14.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Methyl 2-{[3-(4-methylsulfanyl)phenyl-1,2,4oxadiazol-5-yl]methoxy}phenylacetate

The title compound, $C_{19}H_{18}N_2O_4S$, was synthesized by the reaction of methyl (2-hydroxyphenyl)acetate and 3-(4-methyl-thio)phenyl-5-chloromethyl-1,2,4-oxadiazole. The structure exhibits intermolecular C-H···O hydrogen bonds and C-H··· π interactions.

Received 11 October 2004 Accepted 20 October 2004 Online 30 October 2004

Comment

1,2,4-Oxadiazole derivatives are of great interest because of their biological properties. Some derivatives of 1,2,4-oxadiazoles have intrinsic analgesic (Terashita *et al.*, 2002), antiinflammatory (Nicolaides *et al.*, 1998) and antipicornaviral (Romero, 2001) properties and show high efficacy as agonists [*e.g.* for muscarinic (Macor *et al.*, 1996), adrenergic (Quagliato & Andrae, 2002) and 5-hydroxytryptamine (Gur *et al.*, 2001)] and antagonists [*e.g.* for angiotensin (Naka & Kubo, 1999) and adhesion (Juraszyk *et al.*, 1997)] for different receptors. We report here the crystal structure of the title compound, (I).

The molecular structure of (I) is shown in Fig. 1 and bond lengths, angles and torsion angles are given in Table 1. In the crystal structure, molecules are linked by $C-H\cdots O$ hydrogen bonds (Table 2). There are also $C-H\cdots \pi$ interactions in the crystal structure (Table 2 and Fig. 3).

Figure 1

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved A view of the molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level.

Experimental

Methyl (2-hydroxyphenyl)acetate (20 mmol) was dissolved in acetone (20 ml) and potassium carbonate (30 mmol) was added in one portion. 3-[(4-Methylsulfanyl)phenyl]-5-chloromethyl-1,2,4-oxadiazole (20 mmol) in acetone (20 ml) was added to this mixture. The resulting mixture was refluxed for 6 h, then concentrateed under reduced pressure to afford crude compound (I). Pure compound (I) was obtained by crystallization from ethyl acetate (m.p. 359-360 K). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution. ¹H NMR (CDCl₃): δ 7.98–8.00 (*m*, 2H), 7.31-7.32 (m, 2H), 7.23-7.27 (m, 2H), 6.98-7.03 (m, 2H), 5.34 (s, 2H), 3.73 (s, 2H), 3.69 (s, 3H), 3.52 (s, 3H).

Crystal data

$C_{19}H_{18}N_2O_4S$	Z = 2
$M_r = 370.41$	$D_x = 1.373 \text{ Mg m}^{-3}$
Triclinic, $P\overline{1}$	Mo $K\alpha$ radiation
a = 8.3580 (17) Å	Cell parameters from
b = 10.522 (2) Å	reflections
c = 10.581 (2) Å	$\theta = 10 - 13^{\circ}$
$\alpha = 90.13 \ (3)^{\circ}$	$\mu = 0.21 \text{ mm}^{-1}$
$\beta = 102.08 \ (3)^{\circ}$	T = 293 (2) K
$\gamma = 99.73 \ (3)^{\circ}$	Block, colourless
$V = 896.1 (3) \text{ Å}^3$	$0.4 \times 0.3 \times 0.3 \text{ mm}$
Data collection	
Nonius CAD-4 diffractometer	$\theta_{\rm max} = 26.0^{\circ}$
$\omega/2\theta$ scans	$h = 0 \rightarrow 10$
Absorption correction: none	$k = -12 \rightarrow 12$
3752 measured reflections	$l = -13 \rightarrow 12$
3499 independent reflections	3 standard reflections
2763 reflections with $I > 2\sigma(I)$	every 200 reflection
$R_{\rm int} = 0.021$	intensity decay: non

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.142$ S = 0.913499 reflections 236 parameters H-atom parameters constrained 25

S ıe

 $w = 1/[\sigma^2(F_o^2) + (0.1P)^2]$ + 0.35P] where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.014$ $\Delta \rho_{\rm max} = 0.32 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$ Extinction correction: SHELXL97 Extinction coefficient: 0.036 (5)

Figure 3		
The C-H··· π interactions in	(I), shown a	as dashed lines.

Table 1

Selected	geometric	parameters ((Å, °)

S-C2	1.757 (2)	O4-C19	1.442 (3)
S-C1	1.782 (3)	N1-C8	1.304 (3)
O1-C9	1.334 (2)	N2-C8	1.380 (2)
O1-N1	1.416 (2)	N2-C9	1.292 (2)
O2-C10	1.415 (2)	C5-C8	1.468 (3)
O2-C11	1.378 (2)	C9-C10	1.496 (3)
O3-C18	1.200 (2)	C16-C17	1.505 (3)
O4-C18	1.339 (2)	C17-C18	1.504 (2)
C2-S-C1	104.11 (12)	N2-C9-C10	130.83 (18)
C9-O1-N1	106.07 (14)	O1-C9-C10	115.29 (16)
C11-O2-C10	118.04 (15)	O2-C10-C9	113.34 (15)
C18-O4-C19	115.95 (17)	O2-C11-C12	123.99 (17)
C8-N1-O1	103.23 (16)	O2-C11-C16	115.13 (16)
C9-N2-C8	102.45 (16)	C15-C16-C17	120.89 (17)
C7-C2-S	117.43 (17)	C11-C16-C17	120.87 (17)
C4-C5-C8	120.43 (18)	C18-C17-C16	113.25 (15)
N1-C8-N2	114.38 (17)	O3-C18-O4	122.65 (18)
N1-C8-C5	122.09 (18)	O3-C18-C17	126.41 (18)
N2-C8-C5	123.50 (17)	O4-C18-C17	110.87 (16)
N2-C9-O1	113.87 (17)		
C9-O1-N1-C8	0.2 (2)	C9-N2-C8-N1	0.4 (2)
N1-O1-C9-C10	178.57 (17)	C9-N2-C8-C5	-177.86(18)
N1-O1-C9-N2	0.1 (2)	C8-N2-C9-O1	-0.3(2)
С11-О2-С10-С9	-80.0(2)	C8-N2-C9-C10	-178.5(2)
C10-O2-C11-C16	-171.15 (17)	C6-C5-C8-N2	-8.0(3)
C10-O2-C11-C12	9.2 (3)	C4-C5-C8-N2	170.72 (19)
C19-O4-C18-C17	-179.3(2)	C6-C5-C8-N1	173.9 (2)
C19-O4-C18-O3	-2.3 (3)	C4-C5-C8-N1	-7.4 (3)
O1-N1-C8-C5	177.94 (17)	N2-C9-C10-O2	-8.8(3)
O1-N1-C8-N2	-0.3 (2)	O1-C9-C10-O2	173.01 (17)

Table 2		
Hydrogen-bonding geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C12-H12A\cdots O3^{i}$	0.93	2.43	3.257 (3)	148
$C10-H10A\cdots Cg2^{ii}$	0.97	2.77	3.58	142
$C10-H10B\cdots Cg3^{i}$	0.97	2.65	3.43	138
$C17 - H17B \cdots Cg3^{iii}$	0.97	2.85	3.42	118

Symmetry codes: (i) 2-x, -1-y, 3-z; (ii) 1-x, -1-y, 2-z; (iii) 1-x, -1-y, 3-z. (iii) 1-x, -1-y, 3-z. Notes: Cg2 is the centroid of atoms C2–C7 and Cg3 is the centroid of atoms C11–C16.

All H atoms were bonded to the C atoms were placed geometrically, with C—H = 0.93–0.97 Å, and included in the refinement in the riding model approximation, with $U_{\rm iso}({\rm H}) = 1.2$ or $1.5U_{\rm eq}$ of the carrier atom.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97*

(Sheldrick, 1997); molecular graphics: *SHELXTL* (Siemens, 1996); software used to prepare material for publication: *SHELXTL*.

References

- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Gur, E., Dremencov, E., Lerer, B. & Newman, M. E. (2001). *Eur. J. Pharmacol.* **411**, 115–122.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Juraszyk, H., Gante, J., Wurziger, H., Bernotat-Danielowski, S. & Melzer, G.
- (1997). PCT Int. Appl. No. 9744333.
 Macor, J. E., Ordway, T., Smith, R. L., Verhoest, P. R. & Mack, R. A. (1996). J. Org. Chem. 61, 3228–3229.
- Naka, T. & Kubo, K.(1999). Curr. Pharm. Des. 5, 453-472.
- Nicolaides, D. N., Fylaktakidou, K. C., Litinas, K. E. & Hadjipavlou-Litina, D. (1998). Eur. J. Med. Chem. 33, 715–724.
- Quagliato, D. A. & Andrae, P. M. (2002). PCT Int. Appl. No. 0206250.
- Romero, J. R. (2001). Expert Opin. Invest. Drugs, 10, 369-379.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Siemens (1996). SHELXTL. Version 5.06. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Terashita, Z., Naruo, K. & Morimoto, S. (2002). PCT Int. Appl. No. 0260439.